13  TCGA数据下载和整理

选择TCGA数据下载和整理,原因主要有以下几个:

13.1 从官网下载TCGA数据

请跟着视频操作。

TCGA官网:https://portal.gdc.cancer.gov/

13.2 表达矩阵整理

查看所有文件(注意,和视频中的路径不一样,千万要注意你自己的路径!!):

allfiles <- list.files("tcga_meso", pattern = ".tsv",
                       full.names = T,recursive = T) # 查看到最里面一层文件夹
head(allfiles)
## [1] "tcga_meso/gdc_download_20240915_113923.366242/01d53607-1a69-4ce8-9058-705db14adc4e/853dbd81-9079-4d4f-aa38-05b04b159667.rna_seq.augmented_star_gene_counts.tsv"
## [2] "tcga_meso/gdc_download_20240915_113923.366242/03902ef2-8a01-4d14-ae8b-efd0734e712e/7a1d80d7-d1ee-4fc0-8299-cbf119263b52.rna_seq.augmented_star_gene_counts.tsv"
## [3] "tcga_meso/gdc_download_20240915_113923.366242/0a3a4b5f-6bdd-4839-a4ea-eb3baeeb031f/835763c1-a525-401c-bb56-90db5918a621.rna_seq.augmented_star_gene_counts.tsv"
## [4] "tcga_meso/gdc_download_20240915_113923.366242/0ea8ca4e-505b-469c-806a-eee66288e9fd/f8fae9b4-d6ff-4dc9-9018-15d91a8ed36e.rna_seq.augmented_star_gene_counts.tsv"
## [5] "tcga_meso/gdc_download_20240915_113923.366242/113ff3c8-dddc-4794-acfe-1d024f1be05e/11864629-bce9-4e38-9bd1-432df0a54e5b.rna_seq.augmented_star_gene_counts.tsv"
## [6] "tcga_meso/gdc_download_20240915_113923.366242/138a7897-ddf8-41e4-9555-ce07d62f316d/c46e9df6-eba7-49c3-a339-2dc82e208a04.rna_seq.augmented_star_gene_counts.tsv"
length(allfiles)
## [1] 87

用文本编辑器打开其中1个看看情况。如果你用Linux就很简单,windows推荐使用VScode,免费下载,大厂软件,质量有保障。

现在版本的TCGA官网下载的文件,一个文件是1个样本的结果,里面包括60660个mrna(既有编码RNA也有非编码RNA),同时给出了count/tpm/fpkm3种格式。

先读取其中1个试试看:

tmp <- read.table(allfiles[1],sep = "\t",header = F,skip = 6)
dim(tmp)
## [1] 60660     9
head(tmp)
##                   V1       V2             V3   V4  V5  V6      V7      V8
## 1 ENSG00000000003.15   TSPAN6 protein_coding  506 247 259  5.6293  1.8997
## 2  ENSG00000000005.6     TNMD protein_coding    0   0   0  0.0000  0.0000
## 3 ENSG00000000419.13     DPM1 protein_coding 1763 874 890 73.7093 24.8747
## 4 ENSG00000000457.14    SCYL3 protein_coding  490 432 422  3.5925  1.2124
## 5 ENSG00000000460.17 C1orf112 protein_coding  170 280 284  1.4370  0.4849
## 6 ENSG00000000938.13      FGR protein_coding  876 441 435 13.0710  4.4111
##        V9
## 1  2.2155
## 2  0.0000
## 3 29.0094
## 4  1.4139
## 5  0.5655
## 6  5.1443

第4列是count值:

# counts
tmp[1:4,c(1,2,4)]
##                   V1     V2   V4
## 1 ENSG00000000003.15 TSPAN6  506
## 2  ENSG00000000005.6   TNMD    0
## 3 ENSG00000000419.13   DPM1 1763
## 4 ENSG00000000457.14  SCYL3  490

前两列是ensembl_id和HGNC_gene_symbol(参考:生信初学者最佳实践):

gene_ids <- tmp[,1:2]
colnames(gene_ids) <- c("ensembl_id","gene_name")
head(gene_ids)
##           ensembl_id gene_name
## 1 ENSG00000000003.15    TSPAN6
## 2  ENSG00000000005.6      TNMD
## 3 ENSG00000000419.13      DPM1
## 4 ENSG00000000457.14     SCYL3
## 5 ENSG00000000460.17  C1orf112
## 6 ENSG00000000938.13       FGR

批量读取,并按列拼接在一起(所有样本的基因顺序都是一样的,每个文件的结构都是一样的,所以才可以直接拼接):

meso_expr <- do.call(cbind, lapply(allfiles, function(x){
  tmp <- read.table(x,sep = "\t",header = F,skip = 6)
  tmp <- tmp[,4] # 选count,你想要tpm就选tpm那一列
}))

dim(meso_expr)
## [1] 60660    87
meso_expr[1:4,1:4]
##      [,1] [,2] [,3] [,4]
## [1,]  506  332 1055  821
## [2,]    0    0    1    2
## [3,] 1763 1034 1999 1337
## [4,]  490  520  856  344

13.3 添加行名和列名

添加行名,就是基因名,我选择HGNC_gene_symbol:

rownames(meso_expr) <- tmp[,2]

列名比较复杂,我这里就先用文件名作为列名。

查看下文件和表达矩阵列的对应关系对不对:

allfiles[2]
## [1] "tcga_meso/gdc_download_20240915_113923.366242/03902ef2-8a01-4d14-ae8b-efd0734e712e/7a1d80d7-d1ee-4fc0-8299-cbf119263b52.rna_seq.augmented_star_gene_counts.tsv"

我们不需要前面的路径,只需要xxx.tsv这个名字即可,所以分割字符串:

row_names <- strsplit(allfiles, "/")
row_names <- sapply(row_names,function(x){x[4]})

length(row_names)
## [1] 87
head(row_names)
## [1] "853dbd81-9079-4d4f-aa38-05b04b159667.rna_seq.augmented_star_gene_counts.tsv"
## [2] "7a1d80d7-d1ee-4fc0-8299-cbf119263b52.rna_seq.augmented_star_gene_counts.tsv"
## [3] "835763c1-a525-401c-bb56-90db5918a621.rna_seq.augmented_star_gene_counts.tsv"
## [4] "f8fae9b4-d6ff-4dc9-9018-15d91a8ed36e.rna_seq.augmented_star_gene_counts.tsv"
## [5] "11864629-bce9-4e38-9bd1-432df0a54e5b.rna_seq.augmented_star_gene_counts.tsv"
## [6] "c46e9df6-eba7-49c3-a339-2dc82e208a04.rna_seq.augmented_star_gene_counts.tsv"

添加行名即可:

colnames(meso_expr) <- row_names
meso_expr[1:2,1:2]
##        853dbd81-9079-4d4f-aa38-05b04b159667.rna_seq.augmented_star_gene_counts.tsv
## TSPAN6                                                                         506
## TNMD                                                                             0
##        7a1d80d7-d1ee-4fc0-8299-cbf119263b52.rna_seq.augmented_star_gene_counts.tsv
## TSPAN6                                                                         332
## TNMD                                                                             0

变成数据框结构,并对列排个顺序:

meso_expr <- as.data.frame(meso_expr)
meso_expr <- meso_expr[,order(colnames(meso_expr))]
head(colnames(meso_expr))
## [1] "02204e67-61ec-4407-a8f4-daab9082498e.rna_seq.augmented_star_gene_counts.tsv"
## [2] "068fb718-0419-4ae0-a4e4-df86e352a0ff.rna_seq.augmented_star_gene_counts.tsv"
## [3] "06923905-91b3-45c0-8c05-67ee1ca1fa65.rna_seq.augmented_star_gene_counts.tsv"
## [4] "0a4a1bec-4376-490b-9abb-cfeb9dd6c74b.rna_seq.augmented_star_gene_counts.tsv"
## [5] "0c7e4640-0092-4931-b84f-fd1bef907348.rna_seq.augmented_star_gene_counts.tsv"
## [6] "0cf30abd-2531-4c1e-998e-3c6b7a89e5b8.rna_seq.augmented_star_gene_counts.tsv"

13.4 获取样本名和文件名的对应关系

正经的TCGA表达矩阵的列名很明显不是这样的,而是TCGA-XX-XX-XX这种,所以我们需要给它改一下。

这个名字在哪里呢?就在我们下载的JSON文件里。

如何读取这种文件呢?搜索一下即可。

library(rjson)

# 读取下试试看
aa <- fromJSON(file = "tcga_meso/metadata.cart.2024-09-03.json")

找到文件名和样本名的对应关系:

aa[[1]]$file_name
## [1] "aed00751-a16b-4452-a69b-af47d910b5b5.rna_seq.augmented_star_gene_counts.tsv"
aa[[1]]$associated_entities[[1]]$entity_submitter_id
## [1] "TCGA-XT-AASU-01A-11R-A40A-07"

批量提取:

meta_data <- lapply(aa, function(x){
  data.frame(file_name = x$file_name,
             sample_id = x$associated_entities[[1]]$entity_submitter_id)
})

meta_data[[1]]
##                                                                     file_name
## 1 aed00751-a16b-4452-a69b-af47d910b5b5.rna_seq.augmented_star_gene_counts.tsv
##                      sample_id
## 1 TCGA-XT-AASU-01A-11R-A40A-07

meta_data <- do.call(rbind, meta_data)
meta_data[1:2,]
##                                                                     file_name
## 1 aed00751-a16b-4452-a69b-af47d910b5b5.rna_seq.augmented_star_gene_counts.tsv
## 2 f1183765-f532-499a-aed8-fdd39156a67b.rna_seq.augmented_star_gene_counts.tsv
##                      sample_id
## 1 TCGA-XT-AASU-01A-11R-A40A-07
## 2 TCGA-TS-A7P1-01A-41R-A40A-07

也按照文件名排个序:

meta_data <- meta_data[order(meta_data$file_name),]
head(meta_data$file_name)
## [1] "02204e67-61ec-4407-a8f4-daab9082498e.rna_seq.augmented_star_gene_counts.tsv"
## [2] "068fb718-0419-4ae0-a4e4-df86e352a0ff.rna_seq.augmented_star_gene_counts.tsv"
## [3] "06923905-91b3-45c0-8c05-67ee1ca1fa65.rna_seq.augmented_star_gene_counts.tsv"
## [4] "0a4a1bec-4376-490b-9abb-cfeb9dd6c74b.rna_seq.augmented_star_gene_counts.tsv"
## [5] "0c7e4640-0092-4931-b84f-fd1bef907348.rna_seq.augmented_star_gene_counts.tsv"
## [6] "0cf30abd-2531-4c1e-998e-3c6b7a89e5b8.rna_seq.augmented_star_gene_counts.tsv"

查看这个顺序和表达矩阵的列的顺序是否完全一样:

identical(meta_data$file_name, colnames(meso_expr))
## [1] TRUE

直接替换列名即可:

colnames(meso_expr) <- meta_data$sample_id
meso_expr[1:4,1:4]
##        TCGA-ZN-A9VO-01A-11R-A40A-07 TCGA-LK-A4O7-01A-11R-A34F-07
## TSPAN6                         1068                         1165
## TNMD                              1                            0
## DPM1                           2599                         1883
## SCYL3                           660                          531
##        TCGA-MQ-A6BL-01A-11R-A34F-07 TCGA-TS-A8AI-01A-11R-A40A-07
## TSPAN6                         1307                         1242
## TNMD                              0                            1
## DPM1                           1924                         2263
## SCYL3                           336                          520

13.5 easyTCGA

后续问题?

临床信息? 临床信息和表达矩阵匹配?

直接用easyTCGA

library(easyTCGA)

1行代码搞定一切(详细用法请看视频教程):

# 对网络有要求
getmrnaexpr("TCGA-MESO")

=> Querying data. 

Registered S3 methods overwritten by 'dbplyr':
  method         from
  print.tbl_lazy     
  print.tbl_sql      
--------------------------------------
o GDCquery: Searching in GDC database
--------------------------------------
Genome of reference: hg38
--------------------------------------------
oo Accessing GDC. This might take a while...
--------------------------------------------
ooo Project: TCGA-MESO
--------------------
oo Filtering results
--------------------
ooo By data.type
ooo By workflow.type
----------------
oo Checking data
----------------
ooo Checking if there are duplicated cases
ooo Checking if there are results for the query
-------------------
o Preparing output
-------------------

=> Downloading data. 

Downloading data for project TCGA-MESO
GDCdownload will download 87 files. A total of 368.350266 MB
Downloading chunk 1 of 1 (87 files, size = 368.350266 MB) as Thu_Sep_12_13_36_31_2024_0.tar.gz
Downloading: 89 MB      
=> Preparing SummarizedExperiment.

|=================================|100%                      Completed after 8 s 
Starting to add information to samples
 => Add clinical information to samples
 => Adding TCGA molecular information from marker papers
 => Information will have prefix 'paper_' 
Available assays in SummarizedExperiment : 
  => unstranded
  => stranded_first
  => stranded_second
  => tpm_unstrand
  => fpkm_unstrand
  => fpkm_uq_unstrand
=> Saving file: output_mRNA_lncRNA_expr/TCGA-MESO_SummarizedExperiment.rdata
=> File saved

=> Preparing mRNA and lncRNA.

=> Successful.