2  多样本均数比较的方差分析

2.1 完全随机设计资料的方差分析

使用课本例4-2的数据。

首先是构造数据,本次数据自己从书上摘录。

trt<-c(rep("group1",30),rep("group2",30),rep("group3",30),rep("group4",30))

weight<-c(3.53,4.59,4.34,2.66,3.59,3.13,3.30,4.04,3.53,3.56,3.85,4.07,1.37,
          3.93,2.33,2.98,4.00,3.55,2.64,2.56,3.50,3.25,2.96,4.30,3.52,3.93,
          4.19,2.96,4.16,2.59,2.42,3.36,4.32,2.34,2.68,2.95,2.36,2.56,2.52,
          2.27,2.98,3.72,2.65,2.22,2.90,1.98,2.63,2.86,2.93,2.17,2.72,1.56,
          3.11,1.81,1.77,2.80,3.57,2.97,4.02,2.31,2.86,2.28,2.39,2.28,2.48,
          2.28,3.48,2.42,2.41,2.66,3.29,2.70,2.66,3.68,2.65,2.66,2.32,2.61,
          3.64,2.58,3.65,3.21,2.23,2.32,2.68,3.04,2.81,3.02,1.97,1.68,0.89,
          1.06,1.08,1.27,1.63,1.89,1.31,2.51,1.88,1.41,3.19,1.92,0.94,2.11,
          2.81,1.98,1.74,2.16,3.37,2.97,1.69,1.19,2.17,2.28,1.72,2.47,1.02,
          2.52,2.10,3.71)

data1<-data.frame(trt,weight)

head(data1)
##      trt weight
## 1 group1   3.53
## 2 group1   4.59
## 3 group1   4.34
## 4 group1   2.66
## 5 group1   3.59
## 6 group1   3.13

数据一共两列,第一列是分组(一共四组),第二列是低密度脂蛋白测量值。

先简单看下数据分布:

boxplot(weight ~ trt, data = data1)

进行完全随机设计资料的方差分析,或者叫单因素方差分析(one-factor ANOVA):

fit <- aov(weight ~ trt, data = data1)
summary(fit)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## trt           3  32.16  10.719   24.88 1.67e-12 ***
## Residuals   116  49.97   0.431                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

结果显示组间自由度为3,组内自由度为116,组间离均差平方和为32.16,组内离均差平方和为49.97,组间均方为10.719,组内均方为0.431,F值=24.88,p=1.67e-12,和课本一致。

再简单介绍一下可视化的平均数和可信区间的方法:

library(gplots)
plotmeans(weight~trt,xlab = "treatment",ylab = "weight",
          main="mean plot\nwith95% CI")

2.2 随机区组设计资料的方差分析

使用例4-4的数据。

首先是构造数据,本次数据自己从书上摘录。。

weight <- c(0.82,0.65,0.51,0.73,0.54,0.23,0.43,0.34,0.28,0.41,0.21,
            0.31,0.68,0.43,0.24)
block <- c(rep(c("1","2","3","4","5"),each=3))
group <- c(rep(c("A","B","C"),5))

data4_4 <- data.frame(weight,block,group)

head(data4_4)
##   weight block group
## 1   0.82     1     A
## 2   0.65     1     B
## 3   0.51     1     C
## 4   0.73     2     A
## 5   0.54     2     B
## 6   0.23     2     C

数据一共3列,第一列是小白鼠肉瘤重量,第二列是区组因素(5个区组),第三列是分组(一共3组)

进行随机区组设计资料的方差分析:

fit <- aov(weight ~ block + group,data = data4_4)#随机区组设计方差分析,注意顺序
summary(fit)
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## block        4 0.2284 0.05709   5.978 0.01579 * 
## group        2 0.2280 0.11400  11.937 0.00397 **
## Residuals    8 0.0764 0.00955                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

结果显示区组间自由度为4,分组间自由度为2,组内自由度为8,区组间离均差平方和为0.2284,分组间离均差平方和为0.2280,组内离均差平方和为0.0764,区组间均方为0.05709,分组间均方为0.1140,组内均方为0.00955,区组间F值=5.798,p=0.01579,分组间F值=11.937,p=0.00397,和课本一致。

2.3 拉丁方设计方差分析

使用课本例4-5的数据。

首先是构造数据,本次数据自己从书上摘录。

psize <- c(87,75,81,75,84,66,73,81,87,85,64,79,73,73,74,78,73,77,77,68,69,74,76,73,
           64,64,72,76,70,81,75,77,82,61,82,61)
drug <- c("C","B","E","D","A","F","B","A","D","C","F","E","F","E","B","A","D","C",
          "A","F","C","B","E","D","D","C","F","E","B","A","E","D","A","F","C","B")
col_block <- c(rep(1:6,6))
row_block <- c(rep(1:6,each=6))
mydata <- data.frame(psize,drug,col_block,row_block)
mydata$col_block <- factor(mydata$col_block)
mydata$row_block <- factor(mydata$row_block)
str(mydata)
## 'data.frame':    36 obs. of  4 variables:
##  $ psize    : num  87 75 81 75 84 66 73 81 87 85 ...
##  $ drug     : chr  "C" "B" "E" "D" ...
##  $ col_block: Factor w/ 6 levels "1","2","3","4",..: 1 2 3 4 5 6 1 2 3 4 ...
##  $ row_block: Factor w/ 6 levels "1","2","3","4",..: 1 1 1 1 1 1 2 2 2 2 ...

数据一共4列,第一列是皮肤疱疹大小,第二列是不同药物(处理因素,共6种),第三列是列区组因素,第四列是行区组因素。

进行拉丁方设计的方差分析:

fit <- aov(psize ~ drug + row_block + col_block, data = mydata)
summary(fit)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## drug         5  667.1  133.43   3.906 0.0124 *
## row_block    5  250.5   50.09   1.466 0.2447  
## col_block    5   85.5   17.09   0.500 0.7723  
## Residuals   20  683.2   34.16                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

结果显示行区组间自由度为5,列区组间自由度为5,分组(处理因素)间自由度为5,组内自由度为20; 行区组间离均差平方和为250.5,列区组间离均差平方和为85.5,分组间离均差平方和为667.1,组内离均差平方和为0.0683.2; 行区组间均方为50.09,列区组间均方为17.09,分组间均方为133.43,组内均方为34.16, 行区组间F值=1.466,p=0.2447,列区组间F值=0.5,p=0.7723,分组间F值=3.906,p=0.0124,和课本一致。

2.4 两阶段交叉设计资料方差分析

使用课本例4-6的数据。

首先是构造数据,本次数据自己从书上摘录。

contain <- c(760,770,860,855,568,602,780,800,960,958,940,952,635,650,440,450,
             528,530,800,803)
phase <- rep(c("phase_1","phase_2"),10)
type <- c("A","B","B","A","A","B","A","B","B","A","B","A","A","B","B","A",
          "A","B","B","A")
testid <- rep(1:10,each=2)
mydata <- data.frame(testid,phase,type,contain)

str(mydata)
## 'data.frame':    20 obs. of  4 variables:
##  $ testid : int  1 1 2 2 3 3 4 4 5 5 ...
##  $ phase  : chr  "phase_1" "phase_2" "phase_1" "phase_2" ...
##  $ type   : chr  "A" "B" "B" "A" ...
##  $ contain: num  760 770 860 855 568 602 780 800 960 958 ...

mydata$testid <- factor(mydata$testid)

数据一共4列,第一列是受试者id,第二列是不同阶段,第三列是测定方法,第四列是测量值。

简单看下2个阶段情况:

table(mydata$phase,mydata$type)
##          
##           A B
##   phase_1 5 5
##   phase_2 5 5

进行两阶段交叉设计资料方差分析:

fit <- aov(contain~phase+type+testid,mydata)
summary(fit)
##             Df Sum Sq Mean Sq  F value   Pr(>F)    
## phase        1    490     490    9.925   0.0136 *  
## type         1    198     198    4.019   0.0799 .  
## testid       9 551111   61235 1240.195 1.32e-11 ***
## Residuals    8    395      49                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

结果和课本一致!

2.5 多个样本均数间的多重比较

课本例4-7,使用了课本例4-2的数据。

首先是构造数据,本次数据自己从书上摘录。

trt<-c(rep("group1",30),rep("group2",30),rep("group3",30),rep("group4",30))

weight<-c(3.53,4.59,4.34,2.66,3.59,3.13,3.30,4.04,3.53,3.56,3.85,4.07,1.37,
          3.93,2.33,2.98,4.00,3.55,2.64,2.56,3.50,3.25,2.96,4.30,3.52,3.93,
          4.19,2.96,4.16,2.59,2.42,3.36,4.32,2.34,2.68,2.95,2.36,2.56,2.52,
          2.27,2.98,3.72,2.65,2.22,2.90,1.98,2.63,2.86,2.93,2.17,2.72,1.56,
          3.11,1.81,1.77,2.80,3.57,2.97,4.02,2.31,2.86,2.28,2.39,2.28,2.48,
          2.28,3.48,2.42,2.41,2.66,3.29,2.70,2.66,3.68,2.65,2.66,2.32,2.61,
          3.64,2.58,3.65,3.21,2.23,2.32,2.68,3.04,2.81,3.02,1.97,1.68,0.89,
          1.06,1.08,1.27,1.63,1.89,1.31,2.51,1.88,1.41,3.19,1.92,0.94,2.11,
          2.81,1.98,1.74,2.16,3.37,2.97,1.69,1.19,2.17,2.28,1.72,2.47,1.02,
          2.52,2.10,3.71)

data1<-data.frame(trt,weight)
data1$trt <- factor(data1$trt)

str(data1)
## 'data.frame':    120 obs. of  2 variables:
##  $ trt   : Factor w/ 4 levels "group1","group2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ weight: num  3.53 4.59 4.34 2.66 3.59 3.13 3.3 4.04 3.53 3.56 ...

数据一共两列,第一列是分组(一共四组),第二列是低密度脂蛋白测量值。

进行完全随机设计资料的方差分析:

fit <- aov(weight ~ trt, data = data1)
summary(fit)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## trt           3  32.16  10.719   24.88 1.67e-12 ***
## Residuals   116  49.97   0.431                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

2.5.1 LSD-t检验

使用超级全能的PMCMRplus包实现,需要自己安装。

library(PMCMRplus)

res <- lsdTest(fit)
# lsdTest(weight ~ trt, data = data1) 也可以

summary(res)
##                      t value   Pr(>|t|)    
## group2 - group1 == 0  -4.219 4.8872e-05 ***
## group3 - group1 == 0  -4.322 3.2889e-05 ***
## group4 - group1 == 0  -8.639 3.5772e-14 ***
## group3 - group2 == 0  -0.102    0.91871    
## group4 - group2 == 0  -4.420 2.2345e-05 ***
## group4 - group3 == 0  -4.318 3.3397e-05 ***

结果比SPSS的结果更加直接,给出了统计量和P值,可以非常直观的看出哪两个组之间有差别。group2group1的t值是-4.219,和课本的-4.18略有差别,问题不大。

从结果中可知:group2group3是没差别的,和另外两组有差别。

还可以可视化结果(字母相同的是没差别的):

plot(res)

2.5.2 TukeyHSD

这里介绍一种 TukeyHSD方法:

TukeyHSD(fit) ### 每个组之间进行比较,多重比较
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = weight ~ trt, data = data1)
## 
## $trt
##                      diff        lwr        upr     p adj
## group2-group1 -0.71500000 -1.1567253 -0.2732747 0.0002825
## group3-group1 -0.73233333 -1.1740587 -0.2906080 0.0001909
## group4-group1 -1.46400000 -1.9057253 -1.0222747 0.0000000
## group3-group2 -0.01733333 -0.4590587  0.4243920 0.9996147
## group4-group2 -0.74900000 -1.1907253 -0.3072747 0.0001302
## group4-group3 -0.73166667 -1.1733920 -0.2899413 0.0001938

这个结果更直观,可以直接看到每个组之间的比较,后面给出了P值。

可视化结果:

par(las=2)#旋转纵坐标标签
par(mar=c(5,8,4,2))#设置四个画图边距
plot(TukeyHSD(fit))

图形中置信区间包含0的疗法说明差异不显著。

2.5.3 Dunnett-t检验

使用超级全能的PMCMRplus包实现

library(PMCMRplus)

res <- dunnettTest(fit)
# 或者 dunnettTest(weight ~ trt, data = data1)

summary(res)
##                      t value   Pr(>|t|)    
## group2 - group1 == 0  -4.219 0.00013696 ***
## group3 - group1 == 0  -4.322 9.5659e-05 ***
## group4 - group1 == 0  -8.639 5.0182e-14 ***

结果也是非常明显,所有组和安慰剂组相比都有意义(3个t值和课本也是略有差别,问题不大)。

可视化结果:

plot(res)

Dunnett-t检验用于g-1个实验组和一个对照组的均数差别的多重比较,所以从上图看:group1和其他3组都是有差别的。

2.5.4 SNK-q检验

课本例4-9,使用了例4-4的数据。

还是使用超级全能的PMCMRplus包实现。

library(PMCMRplus)

# 需要把字符型变成因子型
#data4_4$block <- factor(data4_4$block)#没用到区组
data4_4$group <- factor(data4_4$group)

fit <- aov(weight ~ group,data = data4_4)
res <- snkTest(fit)

summary(res)
##            q value Pr(>|q|)  
## B - A == 0  -2.526 0.099390 .
## C - A == 0  -4.209 0.028913 *
## C - B == 0  -1.684 0.256834
#summaryGroup(res)

这个结果也很直观,可以直接看到每个组之间的比较,给出了q值和P值(但是结果和课本不一样,试了多种方法,q值全都不一样)。

可视化结果:

plot(res)

2.6 多样本方差比较的Bartlett检验和Levene检验

2.6.1 多样本方差比较的Bartlett检验

课本例4-10,使用课本例4-2的数据。

trt<-c(rep("group1",30),rep("group2",30),rep("group3",30),rep("group4",30))

weight<-c(3.53,4.59,4.34,2.66,3.59,3.13,3.30,4.04,3.53,3.56,3.85,4.07,1.37,
          3.93,2.33,2.98,4.00,3.55,2.64,2.56,3.50,3.25,2.96,4.30,3.52,3.93,
          4.19,2.96,4.16,2.59,2.42,3.36,4.32,2.34,2.68,2.95,2.36,2.56,2.52,
          2.27,2.98,3.72,2.65,2.22,2.90,1.98,2.63,2.86,2.93,2.17,2.72,1.56,
          3.11,1.81,1.77,2.80,3.57,2.97,4.02,2.31,2.86,2.28,2.39,2.28,2.48,
          2.28,3.48,2.42,2.41,2.66,3.29,2.70,2.66,3.68,2.65,2.66,2.32,2.61,
          3.64,2.58,3.65,3.21,2.23,2.32,2.68,3.04,2.81,3.02,1.97,1.68,0.89,
          1.06,1.08,1.27,1.63,1.89,1.31,2.51,1.88,1.41,3.19,1.92,0.94,2.11,
          2.81,1.98,1.74,2.16,3.37,2.97,1.69,1.19,2.17,2.28,1.72,2.47,1.02,
          2.52,2.10,3.71)

data1<-data.frame(trt,weight)
data1$trt <- factor(data1$trt)

str(data1)
## 'data.frame':    120 obs. of  2 variables:
##  $ trt   : Factor w/ 4 levels "group1","group2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ weight: num  3.53 4.59 4.34 2.66 3.59 3.13 3.3 4.04 3.53 3.56 ...

进行Bartlett检验:

bartlett.test(weight ~ trt, data = data1)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  weight by trt
## Bartlett's K-squared = 5.2192, df = 3, p-value = 0.1564

由结果可知,K-squared(卡方)=5.2192,P值为0.1564,不拒绝H0,还不能认为4个实验组的低密度脂蛋白值不满足方差齐性!

2.6.2 多样本方差比较的Levene检验

使用car包实现。

library(car)

leveneTest(weight ~ trt, data = data1)
## Levene's Test for Homogeneity of Variance (center = median)
##        Df F value Pr(>F)
## group   3   1.493 0.2201
##       116

由结果可知,不能认为不满足方差齐性!