35  亚组分析1行代码实现

前面演示了如何使用purrr进行回归模型的亚组分析及森林图绘制,本来找了好久没找到可以实现这个功能的R包,都打算自己写个包了,没想到这几天找到了!

完美实现COX回归和logistic回归的亚组分析,除此之外,还支持svyglmsvycoxph的结果,并且数据结果可直接用于绘制森林图,连NA和各种空行都给你准备好了!

包的名字叫jstable,直达网址:https://jinseob2kim.github.io/jstable/

这个包除了亚组分析外,还有其他很多函数,大家自己探索即可,我这里就演示下如何进行亚组分析!

35.1 安装

install.packages("jstable")

## From github: latest version
remotes::install_github('jinseob2kim/jstable')
library(jstable)

35.2 准备数据

还是使用之前演示的数据。

使用survival包中的colon数据集用于演示,这是一份关于结肠癌患者的生存数据,共有1858行,16列,共分为3个组,1个观察组+2个治疗组,观察他们发生终点事件的差异。

各变量的解释如下:

  • id:患者id
  • study:没啥用,所有患者都是1
  • rx:治疗方法,共3种,Obs(观察组), Lev(左旋咪唑), Lev+5FU(左旋咪唑+5-FU)
  • sex:性别,1是男性
  • age:年龄
  • obstruct:肠梗阻,1是有
  • perfor:肠穿孔,1是有
  • adhere:和附近器官粘连,1是有
  • nodes:转移的淋巴结数量
  • status:生存状态,0代表删失,1代表发生终点事件
  • differ:肿瘤分化程度,1-well,2-moderate,3-poor
  • extent:局部扩散情况,1-submucosa,2-muscle,3-serosa,4-contiguous structures
  • surg:手术后多久了,1-long,2-short
  • node4:是否有超过4个阳性淋巴结,1代表是
  • time:生存时间
  • etype:终点事件类型,1-复发,2-死亡
rm(list = ls())
library(survival)

str(colon)
## 'data.frame':    1858 obs. of  16 variables:
##  $ id      : num  1 1 2 2 3 3 4 4 5 5 ...
##  $ study   : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ rx      : Factor w/ 3 levels "Obs","Lev","Lev+5FU": 3 3 3 3 1 1 3 3 1 1 ...
##  $ sex     : num  1 1 1 1 0 0 0 0 1 1 ...
##  $ age     : num  43 43 63 63 71 71 66 66 69 69 ...
##  $ obstruct: num  0 0 0 0 0 0 1 1 0 0 ...
##  $ perfor  : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ adhere  : num  0 0 0 0 1 1 0 0 0 0 ...
##  $ nodes   : num  5 5 1 1 7 7 6 6 22 22 ...
##  $ status  : num  1 1 0 0 1 1 1 1 1 1 ...
##  $ differ  : num  2 2 2 2 2 2 2 2 2 2 ...
##  $ extent  : num  3 3 3 3 2 2 3 3 3 3 ...
##  $ surg    : num  0 0 0 0 0 0 1 1 1 1 ...
##  $ node4   : num  1 1 0 0 1 1 1 1 1 1 ...
##  $ time    : num  1521 968 3087 3087 963 ...
##  $ etype   : num  2 1 2 1 2 1 2 1 2 1 ...

可以使用cox回归探索危险因素。分类变量需要变为因子型,这样在进行回归时会自动进行哑变量设置。

为了演示,我们只选择Obs组和Lev+5FU组的患者,所有的分类变量都变为factor,把年龄也变为分类变量并变成factor。

suppressMessages(library(tidyverse))

df <- colon %>% 
  mutate(rx=as.numeric(rx)) %>% 
  filter(etype == 1, !rx == 2) %>%  #rx %in% c("Obs","Lev+5FU"), 
  select(time, status,rx, sex, age,obstruct,perfor,adhere,differ,extent,surg,node4) %>% 
  mutate(sex=factor(sex, levels=c(0,1),labels=c("female","male")),
         age=ifelse(age >65,">65","<=65"),
         age=factor(age, levels=c(">65","<=65")),
         obstruct=factor(obstruct, levels=c(0,1),labels=c("No","Yes")),
         perfor=factor(perfor, levels=c(0,1),labels=c("No","Yes")),
         adhere=factor(adhere, levels=c(0,1),labels=c("No","Yes")),
         differ=factor(differ, levels=c(1,2,3),labels=c("well","moderate","poor")),
         extent=factor(extent, levels=c(1,2,3,4),
                       labels=c("submucosa","muscle","serosa","contiguous")),
         surg=factor(surg, levels=c(0,1),labels=c("short","long")),
         node4=factor(node4, levels=c(0,1),labels=c("No","Yes")),
         rx=ifelse(rx==3,0,1),
         rx=factor(rx,levels=c(0,1))
         )

str(df)
## 'data.frame':    619 obs. of  12 variables:
##  $ time    : num  968 3087 542 245 523 ...
##  $ status  : num  1 0 1 1 1 1 0 0 0 1 ...
##  $ rx      : Factor w/ 2 levels "0","1": 1 1 2 1 2 1 2 1 1 2 ...
##  $ sex     : Factor w/ 2 levels "female","male": 2 2 1 1 2 1 2 1 2 2 ...
##  $ age     : Factor w/ 2 levels ">65","<=65": 2 2 1 1 1 2 2 1 2 2 ...
##  $ obstruct: Factor w/ 2 levels "No","Yes": 1 1 1 2 1 1 1 1 1 1 ...
##  $ perfor  : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...
##  $ adhere  : Factor w/ 2 levels "No","Yes": 1 1 2 1 1 1 1 1 1 1 ...
##  $ differ  : Factor w/ 3 levels "well","moderate",..: 2 2 2 2 2 2 2 2 3 2 ...
##  $ extent  : Factor w/ 4 levels "submucosa","muscle",..: 3 3 2 3 3 3 3 3 3 3 ...
##  $ surg    : Factor w/ 2 levels "short","long": 1 1 1 2 2 1 1 2 2 1 ...
##  $ node4   : Factor w/ 2 levels "No","Yes": 2 1 2 2 2 2 1 1 1 1 ...

35.3 亚组分析

使用jstable,只要1行代码即可!!!

library(jstable)

res <- TableSubgroupMultiCox(
  
  # 指定公式
  formula = Surv(time, status) ~ rx, 
  
  # 指定哪些变量有亚组
  var_subgroups = c("sex","age","obstruct","perfor","adhere",
                    "differ","extent","surg","node4"), 
  data = df #指定你的数据
  )
## Warning in coxph.fit(X, Y, istrat, offset, init, control, weights = weights, :
## Loglik converged before variable 1 ; coefficient may be infinite.
## Warning in coxph.fit(X, Y, istrat, offset, init, control, weights = weights, :
## Loglik converged before variable 1,5,6,7 ; coefficient may be infinite.
res
##         Variable Count Percent Point Estimate Lower Upper rx=0 rx=1 P value
## rx       Overall   619     100           1.67  1.32  2.11 34.4 48.9  <0.001
## 1            sex  <NA>    <NA>           <NA>  <NA>  <NA> <NA> <NA>    <NA>
## 2         female   312    50.4           1.32  0.96   1.8 41.1 47.8   0.088
## 3           male   307    49.6           2.29   1.6  3.26 26.6 50.1  <0.001
## 4            age  <NA>    <NA>           <NA>  <NA>  <NA> <NA> <NA>    <NA>
## 5            >65   224    36.2           1.97  1.33  2.93 29.8 50.6   0.001
## 6           <=65   395    63.8           1.52  1.14  2.03   37 48.1   0.004
## 7       obstruct  <NA>    <NA>           <NA>  <NA>  <NA> <NA> <NA>    <NA>
## 8             No   502    81.1           1.65  1.27  2.13 34.4 46.8  <0.001
## 9            Yes   117    18.9           1.73  1.01  2.95 34.2 57.6   0.046
## 10        perfor  <NA>    <NA>           <NA>  <NA>  <NA> <NA> <NA>    <NA>
## 11            No   602    97.3           1.64   1.3  2.08 34.3 48.1  <0.001
## 12           Yes    17     2.7           2.87  0.74 11.21 37.5 77.8   0.129
## 13        adhere  <NA>    <NA>           <NA>  <NA>  <NA> <NA> <NA>    <NA>
## 14            No   533    86.1           1.69  1.31  2.18 32.9 47.4  <0.001
## 15           Yes    86    13.9            1.5  0.84  2.67 44.4 57.9   0.173
## 16        differ  <NA>    <NA>           <NA>  <NA>  <NA> <NA> <NA>    <NA>
## 17          well    56     9.2           2.68  1.19  6.02   31 55.6   0.017
## 18      moderate   444    73.3           1.67  1.26  2.21   32 44.8  <0.001
## 19          poor   106    17.5           1.32   0.8  2.19 47.5 64.5   0.277
## 20        extent  <NA>    <NA>           <NA>  <NA>  <NA> <NA> <NA>    <NA>
## 21     submucosa    18     2.9              0     0   Inf   30    0   0.999
## 22        muscle    70    11.3           2.41  0.93  6.22  9.4 28.9   0.069
## 23        serosa   500    80.8           1.68  1.31  2.16 36.7 52.1  <0.001
## 24    contiguous    31       5           1.44  0.55  3.75 58.4 67.2   0.459
## 25          surg  <NA>    <NA>           <NA>  <NA>  <NA> <NA> <NA>    <NA>
## 26         short   452      73           1.82  1.37   2.4 31.5 48.9  <0.001
## 27          long   167      27           1.31  0.86  1.99 43.2 49.1   0.208
## 28         node4  <NA>    <NA>           <NA>  <NA>  <NA> <NA> <NA>    <NA>
## 29            No   453    73.2           1.85  1.37  2.49 27.7 41.5  <0.001
## 30           Yes   166    26.8           1.41  0.97  2.05 53.2 68.7   0.074
##    P for interaction
## rx              <NA>
## 1              0.029
## 2               <NA>
## 3               <NA>
## 4              0.316
## 5               <NA>
## 6               <NA>
## 7              0.752
## 8               <NA>
## 9               <NA>
## 10             0.442
## 11              <NA>
## 12              <NA>
## 13             0.756
## 14              <NA>
## 15              <NA>
## 16             0.402
## 17              <NA>
## 18              <NA>
## 19              <NA>
## 20               0.1
## 21              <NA>
## 22              <NA>
## 23              <NA>
## 24              <NA>
## 25             0.183
## 26              <NA>
## 27              <NA>
## 28             0.338
## 29              <NA>
## 30              <NA>

直接就得出了结果!除了亚组分析的各种结果,还给出了交互作用的P值!

35.4 画森林图

这个结果不需要另存为csv也能直接使用(除非你是细节控,需要修改各种大小写等信息),当然如果你需要HR(95%CI)这种信息,还是需要自己添加一下的。

我们添加个空列用于显示可信区间,并把不想显示的NA去掉即可,还需要把P值,可信区间这些列变为数值型。

plot_df <- res
plot_df[,c(2,3,9)][is.na(plot_df[,c(2,3,9)])] <- " "
plot_df$` ` <- paste(rep(" ", nrow(plot_df)), collapse = " ")
plot_df[,4:6] <- apply(plot_df[,4:6],2,as.numeric)
plot_df
##         Variable Count Percent Point Estimate Lower Upper rx=0 rx=1 P value
## rx       Overall   619     100           1.67  1.32  2.11 34.4 48.9  <0.001
## 1            sex                           NA    NA    NA <NA> <NA>        
## 2         female   312    50.4           1.32  0.96  1.80 41.1 47.8   0.088
## 3           male   307    49.6           2.29  1.60  3.26 26.6 50.1  <0.001
## 4            age                           NA    NA    NA <NA> <NA>        
## 5            >65   224    36.2           1.97  1.33  2.93 29.8 50.6   0.001
## 6           <=65   395    63.8           1.52  1.14  2.03   37 48.1   0.004
## 7       obstruct                           NA    NA    NA <NA> <NA>        
## 8             No   502    81.1           1.65  1.27  2.13 34.4 46.8  <0.001
## 9            Yes   117    18.9           1.73  1.01  2.95 34.2 57.6   0.046
## 10        perfor                           NA    NA    NA <NA> <NA>        
## 11            No   602    97.3           1.64  1.30  2.08 34.3 48.1  <0.001
## 12           Yes    17     2.7           2.87  0.74 11.21 37.5 77.8   0.129
## 13        adhere                           NA    NA    NA <NA> <NA>        
## 14            No   533    86.1           1.69  1.31  2.18 32.9 47.4  <0.001
## 15           Yes    86    13.9           1.50  0.84  2.67 44.4 57.9   0.173
## 16        differ                           NA    NA    NA <NA> <NA>        
## 17          well    56     9.2           2.68  1.19  6.02   31 55.6   0.017
## 18      moderate   444    73.3           1.67  1.26  2.21   32 44.8  <0.001
## 19          poor   106    17.5           1.32  0.80  2.19 47.5 64.5   0.277
## 20        extent                           NA    NA    NA <NA> <NA>        
## 21     submucosa    18     2.9           0.00  0.00   Inf   30    0   0.999
## 22        muscle    70    11.3           2.41  0.93  6.22  9.4 28.9   0.069
## 23        serosa   500    80.8           1.68  1.31  2.16 36.7 52.1  <0.001
## 24    contiguous    31       5           1.44  0.55  3.75 58.4 67.2   0.459
## 25          surg                           NA    NA    NA <NA> <NA>        
## 26         short   452      73           1.82  1.37  2.40 31.5 48.9  <0.001
## 27          long   167      27           1.31  0.86  1.99 43.2 49.1   0.208
## 28         node4                           NA    NA    NA <NA> <NA>        
## 29            No   453    73.2           1.85  1.37  2.49 27.7 41.5  <0.001
## 30           Yes   166    26.8           1.41  0.97  2.05 53.2 68.7   0.074
##    P for interaction
## rx              <NA>
## 1              0.029
## 2               <NA>
## 3               <NA>
## 4              0.316
## 5               <NA>
## 6               <NA>
## 7              0.752
## 8               <NA>
## 9               <NA>
## 10             0.442
## 11              <NA>
## 12              <NA>
## 13             0.756
## 14              <NA>
## 15              <NA>
## 16             0.402
## 17              <NA>
## 18              <NA>
## 19              <NA>
## 20               0.1
## 21              <NA>
## 22              <NA>
## 23              <NA>
## 24              <NA>
## 25             0.183
## 26              <NA>
## 27              <NA>
## 28             0.338
## 29              <NA>
## 30              <NA>
##                                                                 
## rx                                                              
## 1                                                               
## 2                                                               
## 3                                                               
## 4                                                               
## 5                                                               
## 6                                                               
## 7                                                               
## 8                                                               
## 9                                                               
## 10                                                              
## 11                                                              
## 12                                                              
## 13                                                              
## 14                                                              
## 15                                                              
## 16                                                              
## 17                                                              
## 18                                                              
## 19                                                              
## 20                                                              
## 21                                                              
## 22                                                              
## 23                                                              
## 24                                                              
## 25                                                              
## 26                                                              
## 27                                                              
## 28                                                              
## 29                                                              
## 30

画图就非常简单!

library(forestploter)
library(grid)

p <- forest(
  data = plot_df[,c(1,2,3,11,9)],
  lower = plot_df$Lower,
  upper = plot_df$Upper,
  est = plot_df$`Point Estimate`,
  ci_column = 4,
  #sizes = (plot_df$estimate+0.001)*0.3, 
  ref_line = 1, 
  xlim = c(0.1,4)
  )
print(p)

这样就搞定了,真的是非常简单了,省去了大量的步骤。

35.5 其他资源

亚组分析和森林图的内容还有非常多的细节问题,为了不影响该合集的主要内容,我把它们放在下面的链接中,大家感兴趣的话可点击下面的链接查看,或者在公众号后台回复亚组分析获取合集链接: