23  ROC曲线的显著性检验

今天说一说ROC(AUC)的比较。

23.1 二分类资料的ROC比较

可以通过pROC包实现的,使用其中roc.test()函数可实现两个ROC的Delong检验。

使用pROC包的aSAH数据,其中outcome列是结果变量,1代表Good,2代表Poor。这是一个动脉瘤性蛛网膜下腔出血的数据集,一共113行,7列。其中:

  • gos6:格拉斯哥量表评分
  • outcome:结果变量
  • gender:性别
  • age:年龄
  • wfns:世界神经外科医师联合会公认的神经学量表评分
  • s100b:生物标志物
  • ndka:生物标志物
library(pROC)

data(aSAH)
dim(aSAH)
## [1] 113   7

str(aSAH)
## 'data.frame':    113 obs. of  7 variables:
##  $ gos6   : Ord.factor w/ 5 levels "1"<"2"<"3"<"4"<..: 5 5 5 5 1 1 4 1 5 4 ...
##  $ outcome: Factor w/ 2 levels "Good","Poor": 1 1 1 1 2 2 1 2 1 1 ...
##  $ gender : Factor w/ 2 levels "Male","Female": 2 2 2 2 2 1 1 1 2 2 ...
##  $ age    : int  42 37 42 27 42 48 57 41 49 75 ...
##  $ wfns   : Ord.factor w/ 5 levels "1"<"2"<"3"<"4"<..: 1 1 1 1 3 2 5 4 1 2 ...
##  $ s100b  : num  0.13 0.14 0.1 0.04 0.13 0.1 0.47 0.16 0.18 0.1 ...
##  $ ndka   : num  3.01 8.54 8.09 10.42 17.4 ...

构建两个ROC对象,然后直接比较即可:

roc1 <- roc(aSAH$outcome,aSAH$s100b)
roc2 <- roc(aSAH$outcome,aSAH$ndka)

res <- roc.test(roc1,roc2)
res
## 
##  DeLong's test for two correlated ROC curves
## 
## data:  roc1 and roc2
## Z = 1.3908, p-value = 0.1643
## alternative hypothesis: true difference in AUC is not equal to 0
## 95 percent confidence interval:
##  -0.04887061  0.28769174
## sample estimates:
## AUC of roc1 AUC of roc2 
##   0.7313686   0.6119580

这个函数里面有个method参数:delong/bootstrap/venkatraman,默认是delongdelongbootstrap用于比较AUC,如果只是ROC曲线的比较,需要用venkatraman。关于这几种方法的具体原理,大家可以去翻相关的论文~

roc.test只能用于两个ROC的比较,如果是多个比较,可以使用MedCalc软件,这个是和SPSS类似的软件,只要点点点即可。

当然也是可以直接画在图里的:

rocobj1 <- plot.roc(aSAH$outcome, aSAH$s100,percent=TRUE, col="#1c61b6")
rocobj2 <- lines.roc(aSAH$outcome, aSAH$ndka, percent=TRUE, col="#008600")

legend("bottomright", legend=c("S100B", "NDKA"), 
       col=c("#1c61b6", "#008600"), lwd=2)

testobj <- roc.test(rocobj1, rocobj2)

text(50, 50, labels=paste("p-value =",format.pval(testobj$p.value)), 
     adj=c(0, .5))

当然你也可以用其他非参数检验的方法进行比较,比如mann whitney u检验。

23.2 生存资料ROC的比较

使用timeROC包实现。还是用之前用过的例子。

rm(list = ls())
library(timeROC)
library(survival)

load(file = "./datasets/timeROC.RData")

使用其中的df2这个数据:

str(df2)
## 'data.frame':    297 obs. of  8 variables:
##  $ event    : num  0 0 1 0 0 1 0 0 0 0 ...
##  $ age      : int  59 63 65 73 59 66 56 42 61 48 ...
##  $ riskScore: num  -0.249 -0.511 -0.211 -0.427 0.279 ...
##  $ futime   : num  3.03 1.16 1.82 1.52 1.34 ...
##  $ gender   : num  2 2 2 1 2 2 1 2 2 2 ...
##  $ t        : num  4 4 4 3 3 3 5 3 NA 4 ...
##  $ n        : num  1 5 1 1 1 1 3 1 NA 1 ...
##  $ m        : num  1 1 1 1 1 3 1 1 3 3 ...

构建几个timeROC:

# riskScore的ROC曲线
ROC.risk <- timeROC(T=df2$futime,
                    delta=df2$event,   
                    marker=df2$riskScore,   
                    cause=1,                
                    weighting="marginal",   
                    times=3,  # c(1,2) 
                    iid=TRUE)


# age的ROC曲线
ROC.age <- timeROC(T=df2$futime,   
                   delta=df2$event,   
                   marker=df2$age,   
                   cause=1,   
                   weighting="marginal",   
                   times=3,   # c(1,2)
                   iid=TRUE)

比较就用compare()函数即可:

compare(ROC.risk, ROC.age)
## $p_values_AUC
##       t=0       t=3 
##        NA 0.4544231

同时使用多个时间点也是可以的:

# riskScore的ROC曲线
ROC.risk <- timeROC(T=df2$futime,
                    delta=df2$event,   
                    marker=df2$riskScore,   
                    cause=1,                
                    weighting="marginal",   
                    times=c(1,2),
                    iid=TRUE)


# age的ROC曲线
ROC.age <- timeROC(T=df2$futime,   
                   delta=df2$event,   
                   marker=df2$age,   
                   cause=1,   
                   weighting="marginal",   
                   times=c(1,2),
                   iid=TRUE)

compare(ROC.risk, ROC.age)
## $p_values_AUC
##        t=1        t=2 
## 0.09758546 0.27995259

compare(ROC.risk, ROC.age, adjusted = T) # 计算调整p值
## $p_values_AUC
##                     t=1       t=2
## Non-adjusted 0.09758546 0.2799526
## Adjusted     0.14983636 0.3984702
## 
## $Cor
##           [,1]      [,2]
## [1,] 1.0000000 0.7750774
## [2,] 0.7750774 1.0000000

画图就不演示了,可以参考前面的内容。

但是要注意,如果两条ROC曲线比较得到的结果是P>0.05的,只能说两者没有统计学意义,并不能直接说这两个ROC曲线的效能是一样的!